Multilevel Modeling Tenko Raykov Michigan State University <u>https://msu.edu/~raykov/</u>

Department of Management University of Aarhus, Denmark August, 2020

> <u>Course Outline</u> (approximately by day)

- 0. Before Getting Started A Brief Introduction to Stata (please study this Section 0, if need be, before the course)
 - What is Stata?
 - Resources for working with Stata
 - Why use Stata?
 - A data set to illustrate some data relevant management capabilities of Stata
 - The Stata working windows
 - Exploring a data set
 - Examining variables
 - Putting order into a data file
 - Assigning labels and variable names
 - Dealing with missing values a first essential step
 - Modifying existing and creating new variables
 - Transforming variables
 - A general approach to variable transformation
 - Getting help.

<u>Day 1:</u>

- 1. Where multilevel modeling begins: Fitting single-level regression models Stata
 - Data set and research question
- Preliminary analyses
- Single-level regression analysis with Stata
 - Plotting residuals against predictors
 - Plotting residuals against fitted (predicted) values
 - Plotting standardized residuals.
- 2. Why do we need multilevel and mixed models?
 - What is multilevel modeling, why can't we do without it, and how come aggregation and disaggregation do not do the job?
 - Examples of nested data and the hallmark of multilevel modeling
 - Another important instance of multilevel modeling
 - Aggregation and disaggregation of variable scores
 - Analytic benefits of multilevel modeling.
 - The beginnings of multilevel modeling why what we already know about regression analysis will be so useful
 - Multilevel models as sets of regression equations
 - An illustrative (and motivating) example of multilevel modeling.

<u>Day 2</u>:

- 1. The intra-class correlation coefficient and its estimation
- The fully unconditional two-level model and definition of the intraclass correlation coefficient (ICC)
- Point and interval estimation of the ICC using Stata
- 2. How many levels? Proportion of third level variance and its evaluation
 - Proportion third level variance

- The fully unconditional three-level model
- Point and interval estimation of proportion third level variance using Stata.
- 3. Robust modeling of lower-level variable relationships in the presence of clustering Subsection 1 (Day 2):
 - What is robust modeling in the presence of nesting effects?
 - A brief intro to structural equation modeling a useful general framework also for multilevel modeling

Subsection 2 (Day 3):

- Robust modeling of hierarchical (multilevel) data using Stata
- Multivariate multiple regression with hierarchical data, missing data, and violation of missing at random.

Day 3 (continued):

- 1. Mixed effects models (mixed models)
 - What are mixed models, what are they made of, and why are they so useful?
 - An illustration of the difference between fixed and random effects
 - Examples of mixed modeling frameworks
 - Mixed models with continuous response variables.
 - Random intercept models
 - Fitting a random intercept model with Stata
 - Model adequacy evaluation
 - Between- and within-estimators and when to use which
 - Random regression models
 - An instructive example and the restricted maximum likelihood (REML) method
 - Random intercept and slope model
 - Multiple random slopes
 - Fixed effects, random effects, and total effects

<u>Day 4</u>:

- 1. Numerical issues and difficulties when fitting multilevel models
- 2. Nested levels (Stata's nomenclature)
 - unconditional three-level mixed models
 - conditional three-level models
 - four-level models
- 3. Mixed models with discrete responses
 - Why do we need these models?
 - A few important statistical facts
 - The generalized linear model (GLIM)
 - Random intercept models with discrete outcomes
 - Random regression models with discrete outcomes
 - Model choice, and its relevance for multilevel discrete outcome models.

<u>Day 5</u>:

- 1. Crossed effects multilevel models
 - What are crossed effects?
 - Multilevel modeling with crossed effects
 - Complex multilevel models and their fitting and result interpretation

2. Longitudinal multilevel modeling

- Introduction
- Multilevel modeling of longitudinal data
- Using Stata to fit unconditional and conditional growth curve models (crosssectional time series).

<u>Day 6</u>:

1. Extensions of multilevel models – latent variable modeling as a useful general framework to pursue also multilevel modeling

- 2. Longitudinal data analysis an "alternative" approach via latent variable modeling.
- 3. Latent class analysis (market segmentation) as another "alternative" to multilevel modeling.
- 4. What we could not cover in this course
- 5. Conclusion and outlook.

Lecture notes volume:

Raykov, T. (2020). *A course in multilevel modeling*. Lecture notes. Michigan State University, East Lansing, Michigan, USA.